Posted in fofabvlic

Exploration of new oil gas fields almost halted

last_img

Continue Reading... Exploration of new oil gas fields almost halted
Posted in uonercqt

Top Trump economic aide Cohn resigns

last_img

Continue Reading... Top Trump economic aide Cohn resigns
Posted in cggzcrpt

Water water everywhere How UV irradiation reversibly switches graphene between hydrophobic and

first_img On the edge of graphene (Phys.org) —Scientists have long observed that the wettability of graphene – an essentially two-dimensional crystalline allotrope of carbon that it interacts oddly with light and with other materials – can be reversed between hydrophobic and hydrophilic states by applying ultraviolet (UV) irradiation. However, an explanation for this behavior has remained elusive. Recently, researchers at The University of New South Wales and University of Technology, Sydney investigating this phenomenon both experimentally and by calculations using density functional theory (DFT) – a computational quantum mechanical modeling method – finding that UV irradiation enables this reversible and controllable transition in graphene films having induced defects by water splitting adsorption on the graphene surface of H2O molecules in air. (Water splitting is the chemically dissociative reaction in which water is separated into hydroxyl and hydrogen; hydroxyl is a chemical functional group containing an oxygen atom connected by a covalent bond to a hydrogen atom; and adsorption is the adhesion of atoms, ions, or molecules from a gas, liquid, or dissolved solid to a surface.) The direct application for this approach is water splitting – a very important step in, for example, hydrogen generation: Using the technique in this work, H2O molecules could be easily split into OH- and H+ groups and adsorbed on defect-induced graphene under UV irradiation. After irradiation, the two groups can be easily desorbed from the graphene and produce hydrogen, allowing the graphene to be used continually as a catalyst for water splitting. Ao points out that when fabricating devices based on graphene – for example, solar cells – layer-by-layer materials fabrication is required. “Hydrophilic graphene is more easily modified and combined with other materials than is hydrophobic graphene. For example, in the case of biomaterials, hydrophilic graphene would be desirable for the biomolecule contact.”It turns out that achieving graphene reversible wettability can be accomplished using other techniques, including external electric fields, plasma treatment, magnetic fields, and neutron diffraction. “Actually, the work with achieving graphene reversible wettability using external electric fields was also reported2 by my group based on first-principle calculations. Compared with using external electric fields, UV irradiation is easily realized in experiment, while a very high electric field is required to realize the wettability transition,” noting that an experiment under a strong electric field is underway. “Plasma has even greater energy, and may induce more defects in graphene. However, the plasma treatment process is more complicated and has greater requirements.” The reaction pathways for the dissociative adsorption of an H2O and an O2 molecule on graphene. Pristine graphene (a) and (b); graphene with mono-atom vacancy (c) and (d); divacancy (e) and (f); edge (g) and (h); grain boundary (i) and (j). Credit: Xu, Z. et al. Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation. Sci. Rep. 4, 6450. Explore further Calculated Raman spectra of graphene. (a) With water, and (b) with oxygen dissociatively adsorbed. Credit: Xu, Z. et al. Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation. Sci. Rep. 4, 6450. The key technique the researchers used to address these challenges was to combine experiment and first-principles calculations. “In our experiment, we demonstrated that the wettability of graphene could be reversibly tuned through UV irradiation in air and vacuum storage,” Ao says. “In addition, computational calculations enable us to understand the exact effect of each individual factor.” After comparing their experimental and calculation results, the scientists found that Raman spectra from the experiment were similar to that of H2O dissociative adsorption on graphene. (In graphene research, Raman spectroscopy is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, and doping.) Moreover, they also considered irradiations at different conditions, such as in O2 and H2O rich environments, and found that H2O concentration clearly affected the wettability change of graphene after irradiation. “Therefore,” Ao adds, “we concluded that H2O dissociative adsorption on graphene induces the reversible wettability transition.” More information: Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation, Scientific Reports (Published online September 23 2014), 4:6450, doi:10.1038/srep06450Related:1First principles study on the hydrophilic and conductive graphene doped with Al atoms, Physical Chemistry Chemical Physics, 2013, 15, 10859-10865, doi:10.1039/C3CP00128H2Reversible Transition of Graphene from Hydrophobic to Hydrophilic in the Presence of an Electric Field, Journal of Physical Chemistry C, 2012, 116 (36), doi:10.1021/jp3050466 The scientists conclude that their discovery may provide new insights into the fundamental principles of water splitting with graphene-based materials, and could thereby lead to other applications – including electrocatalysis, nanomaterials; nanoelectromechanical systems, biomaterials, microfluidic devices, hybrid organic systems, and other advanced multifunctional systems.Dr. Zhimin Ao discussed the paper that he, Doctoral Student Zhemi Xu and their co-authors published in Scientific Reports and the main challenges the researchers faced. “The main challenge – and the motivation for the conducting the study – was to reveal the real mechanism of the reversible wettability transition under UV irradiation and isolate it from various possible reasons, such as the contamination of chemicals on samples or induced by molecules in air,” Ao tells Phys.org. “We also had to identify H2O rather than other possible molecules in air, which contributes the wettability transition under UV irradiation.” After determining the contribution of H2O, he adds, another challenge was to understand the adsorption type of H2O for the wettability transition – that is, chemical or physical adsorption.”Secondly,” Ao continues, “to eliminate drawbacks from chemical doping and induced defects – such as organic molecules on the graphene sample – that may be an important factor in graphene’s wettability transition under UV, the samples were stored for two hours in a vacuum to remove contaminants on the graphene surface.” As a result, most of the remaining graphene defects, such as vacancies, edges and grain boundary, would be there due to the synthesis process. “According to our calculations, on defects of vacancies, edge and grain boundary, water splitting can be easier to achieve. However, other defects can also affect the wettability of graphene, such as aluminum doping, which has been reported by another paper1 of my group.” Looking ahead, Ao notes that they need to further clarify the mechanism for graphene’s hydrophobic to hydrophilic transition under UV irradiation because the latter itself can induce graphene defects. “Although UV irradiation was believed to induce defects in graphene, the problem is that these defects aren’t obvious because this energy source is not strong enough. To further clarify the reversible wettability mechanism, we may use different energy sources to investigate the transition, such as X-ray and neutron diffraction.” They also plan to investigate conductivity change and transport properties under UV irradiation.”High electrical conductivity graphene film with high hydrophilicity is always desirable,” Ao tells Phys.org. “However, these two properties are normally resisting each other. When working with graphene-based devices, exploring the electric conductivity variation of graphene in such processes can help to control and balance these two properties.”Other areas that might benefit from their study, Ao concludes, include sensors and hydrogen generation and storage. Citation: Water, water everywhere: How UV irradiation reversibly switches graphene between hydrophobic and hydrophilic states (2014, October 27) retrieved 18 August 2019 from https://phys.org/news/2014-10-uv-irradiation-reversibly-graphene-hydrophobic.html Journal information: Scientific Reports , Physical Chemistry Chemical Physics © 2014 Phys.org , Journal of Physical Chemistry C Atomic structures of a H2O or an O2 molecule adsorbed on graphene with different types of defects. Credit: Xu, Z. et al. Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation. Sci. Rep. 4, 6450. This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img read more

Continue Reading... Water water everywhere How UV irradiation reversibly switches graphene between hydrophobic and
Posted in zoyaanpx

Corona Labs open sources Corona its free and crossplatform 2D game engine

first_imgCorona Labs announced yesterday that it’s making its free and cross-platform 2D game engine, Corona, available as open source under the GPLv3 license and commercial licenses. The license for builds and releases remains unchanged and the change applies only to the source code of the engine. Corona is a popular game engine for creating 2D games and apps for mobile, desktop systems, TV platforms, and the web. It is based on Lua language and makes use of over 1,000 built-in APIs and plugins, and Corona Native extensions (C/ C++/Obj-C/ Java). According to Vlad Sherban, product manager for Corona Labs, the Corona team had been discussing making Corona open source ever since it got acquired by Appodeal, back in 2017. “We believe that this move will bring transparency to the development process, and will allow users to contribute features or bug fixes to make the project better for everyone,” said Sherban. The team also mentions that transitioning to open source would help them respond quickly to market shifts and changes. It would also ensure that Corona stays relevant at all times for all mobile app developers. Moreover, now that Corona is open source, it will bring more visibility to the development process by letting users see what the engine team is working on and where the project is going. It will also offer extra benefits for businesses as they will be able to acquire a commercial license for source code and customize the engine for certain commercial projects. Additionally, Corona Labs won’t be collecting any statistics from apps built with daily build 2018.3454 or later. When Corona Labs was a closed source product, it used to collect basic app usage stats such as the number of sessions, daily average users, etc. With Corona available as open source now, there is no need to collect this data. “Powered by the new open source model and supported by the development of new features and bug fixes will make Corona more community driven — but not without our help and guidance — going open source will provide confidence in the future of the engine and an opportunity to grow community involvement in engine development,” said Sherban. Read Next NVIDIA open sources its game physics simulation engine, PhysX, and unveils PhysX SDK 4.0 Microsoft open sources Trill, a streaming engine that employs algorithms to process “a trillion events per day” Facebook contributes to MLPerf and open sources Mask R-CNN2Go, its CV framework for embedded and mobile deviceslast_img read more

Continue Reading... Corona Labs open sources Corona its free and crossplatform 2D game engine